Towards Optimally Multiplexed Applications of Universal Arrays

نویسندگان

  • Amir Ben-Dor
  • Tzvika Hartman
  • Richard M. Karp
  • Benno Schwikowski
  • Roded Sharan
  • Zohar Yakhini
چکیده

We study a design and optimization problem that occurs, for example, when single nucleotide polymorphisms (SNPs) are to be genotyped using a universal DNA tag array. The problem of optimizing the universal array to avoid disruptive cross-hybridization between universal components of the system was addressed in previous work. Cross-hybridization can, however, also occur assay specifically, due to unwanted complementarity involving assay-specific components. Here we examine the problem of identifying the most economic experimental configuration of the assay-specific components that avoids cross-hybridization. Our formalization translates this problem into the problem of covering the vertices of one side of a bipartite graph by a minimum number of balanced subgraphs of maximum degree 1. We show that the general problem is NP-complete. However, in the real biological setting, the vertices that need to be covered have degrees bounded by d. We exploit this restriction and develop an O(d)-approximation algorithm for the problem. We also give an O(d)-approximation for a variant of the problem in which the covering subgraphs are required to be vertex disjoint. In addition, we propose a stochastic model for the input data and use it to prove a lower bound on the cover size. We complement our theoretical analysis by implementing two heuristic approaches and testing their performance on synthetic data as well as on simulated SNP data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophoretic and field-effect graphene for all-electrical DNA array technology.

Field-effect transistor biomolecular sensors based on low-dimensional nanomaterials boast sensitivity, label-free operation and chip-scale construction. Chemical vapour deposition graphene is especially well suited for multiplexed electronic DNA array applications, since its large two-dimensional morphology readily lends itself to top-down fabrication of transistor arrays. Nonetheless, graphene...

متن کامل

Barcoded Microparticles for Multiplexed Detection

The detection of multiple targets in a single sample is important for many applications, including medical diagnostics, genotyping, and drug discovery. The current approaches to multiplexing, such as planar arrays (such as DNA microarrays) and suspension (particle-based) arrays, require expensive or cumbersome means of encoding, decoding, or functionalizing substrates. Currently, commercially a...

متن کامل

Application of disposable plastic microfluidic device arrays with customized chemistries to multiplexed biochemical assays.

Plastic microfluidic array platforms and synergistic multiplexed assay chemistries are under development for a variety of applications, including assays of gene expression, proteomics, genotyping, DNA sequencing and fragment analysis, sample preparation and high-throughput pharmaceutical discovery. The low production costs of plastic substrates makes possible economical single-use device arrays...

متن کامل

MARA: a novel approach for highly multiplexed locus-specific SNP genotyping using high-density DNA oligonucleotide arrays.

We have developed a locus-specific DNA target preparation method for highly multiplexed single nucleotide polymorphism (SNP) genotyping called MARA (Multiplexed Anchored Runoff Amplification). The approach uses a single primer per SNP in conjunction with restriction enzyme digested, adapter-ligated human genomic DNA. Each primer is composed of common sequence at the 5' end followed by locus-spe...

متن کامل

Applications of Orthogonal Arrays to Computer Science

Orthogonal arrays (OAs) are basic combinatorial structures, originally studied by statisticians motivated by their applications to design of experiments. In recent years, they have found numerous applications in computer science. Among their applications are derandomization of algorithms, random pattern testing of VLSI chips, authentication codes, universal hash functions, threshold schemes, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computational biology : a journal of computational molecular cell biology

دوره 11 2-3  شماره 

صفحات  -

تاریخ انتشار 2004